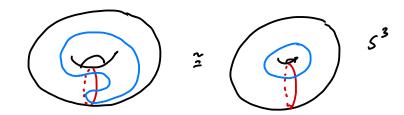
D Heegaard diagrams and knot

there are several ways to represent a knot K in a Heegaard diagram

- (1) Doubly pointed diagram
- (2) Diagram (Zg, x1, ... dg, B1, ... Bg-1) for Y-ubhd (K)
- (1) consider

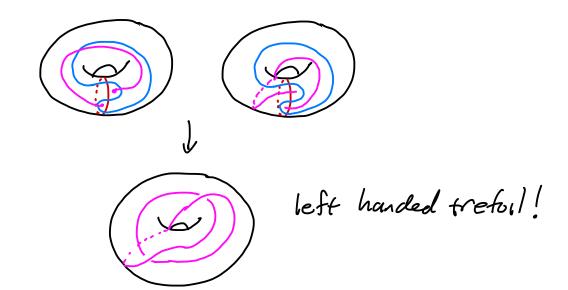
this is a knot is 53



- now () take an arc a, on I connecting points
 and disjoint from the red
 push its interior below I

 (1e into red handlebody)
 - (19. into blue handlebody)

divdr o knot!

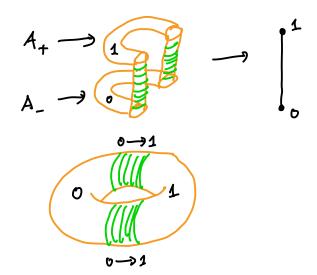


lemma 6:

any knot K CY can be represented by a doubly pointed Heegaard diagram for Y

Proof: given $K \subset Y$ let $Y_{k} = \overline{Y - N(K)}$ where N(K) is a ubhd of K $\partial Y_{K} = \overline{Y}^{2}$

define a function $f: T^2 \to \mathbb{R}$ by



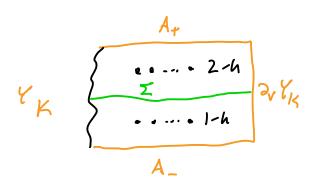
now extend f to the interior of Y_K so the interior maps to (0,1)

approximate f by a Morse function (without changing on the boundary

so we are thinking of Y as a cobordism of manifolds with boundary

 $\partial_{\pm} Y_{k} = A_{\pm}$ $\partial_{\nu} Y_{k} = 2 \text{ annuli}$

we know we can assume Yk has a handlebody
structure with no 0 or 3-handles
and all 1-handles come before 2-handles



so the "Heegaard" surface is a surface of
genus g with
2 boundary compts

now lets put back N(K)

note: N(K) =

2 0-handles

2 1- handles

we write it this way because we think of 2+ of 1-handles as 2, Y_K

note: they are attached to Y_K

olong 2, Y_K = 2 annohi

50 they are attached to Y_K as 2-handles

when we attach these to YK we change YK from

([x Eo,1]) v (x; 2-handles attached to [x (0))
v (p, ______ [x])

 $Y' = \sum_{i=1}^{\infty} \times [0i1] \cup (x_i \cdot 2 - \text{handles attached to } \sum_{i=1}^{\infty} \{0i\})$ $\cup (p_i - \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \{i\})$

where $\bar{Z} = Z \cup 2$ duks to cap off boundary

note: Y'= Y-2(3-60)(5)

and we get Y from Y' by glving

in O-handles from N(K)

one of these is a O-handle for Y

the other is a 3-handle

now, Where is K?

we can push the part of K in the upper handlebody onto I so it is disjoint from Bi's

similarly for the part in the lower handle body

this is exactly the description of K in the construction above!

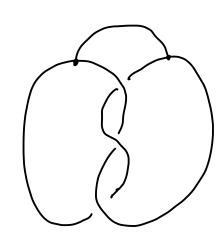
note: by construction K = union of gradient flowlines through the 2 points!

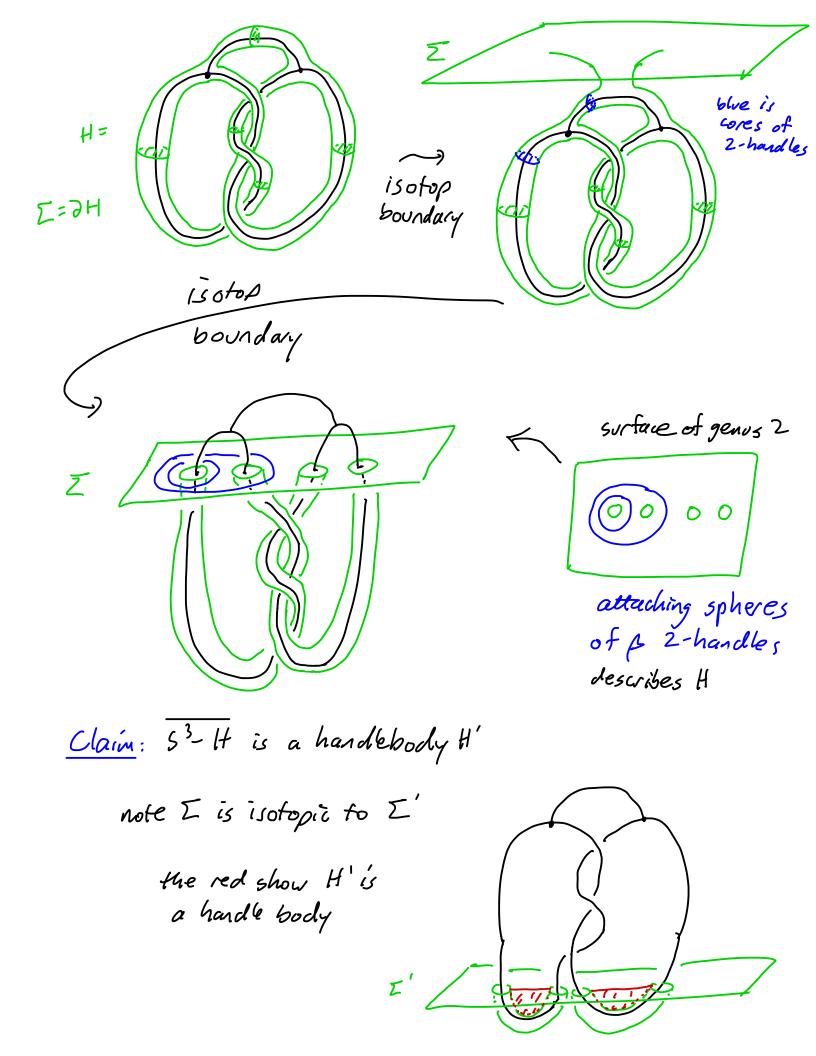
We know the doubly pointed diagrams exist, but how to find then for knots in 53?

We start with an example:

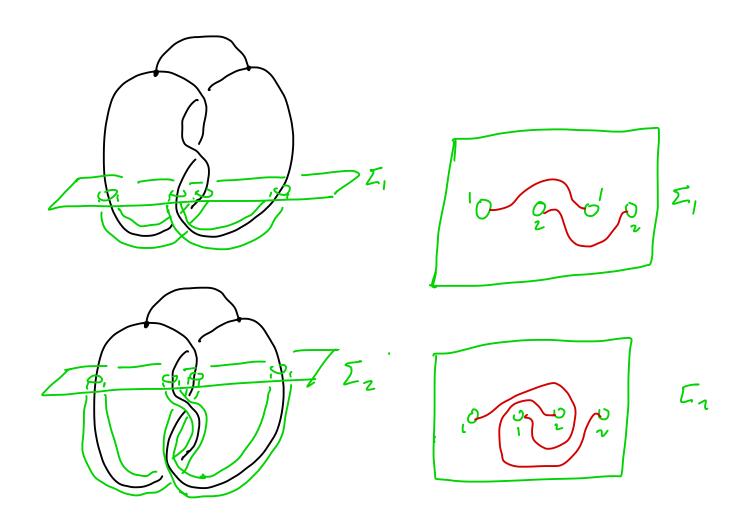
Consider

note a neighborhood of this
is a handlebody H
(nbhd of any graph is!)

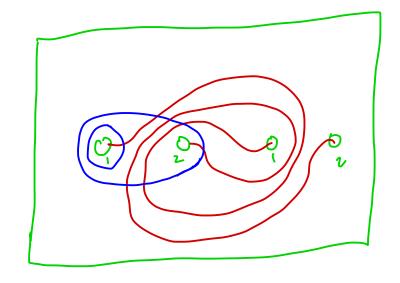




track the red curves as you push I'up to I

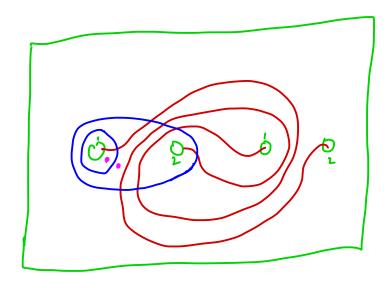


so on I we see

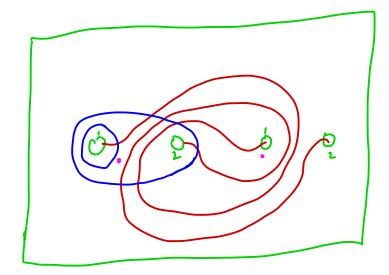


this describes a Heegaard splitting of 5° exercise: Check this.

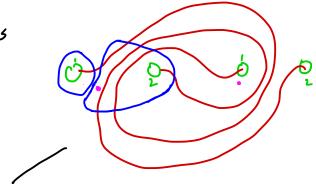
exercise: Show the 2 points below describe K

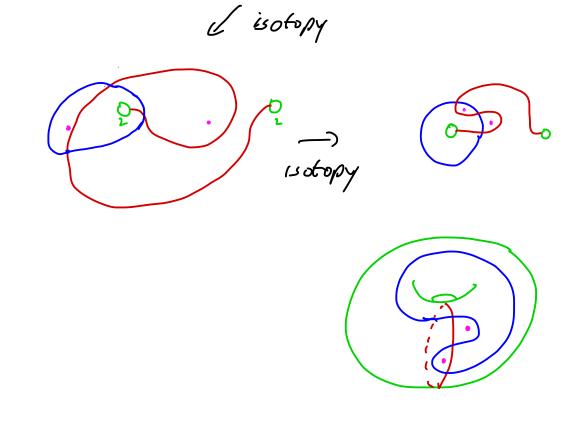


note:

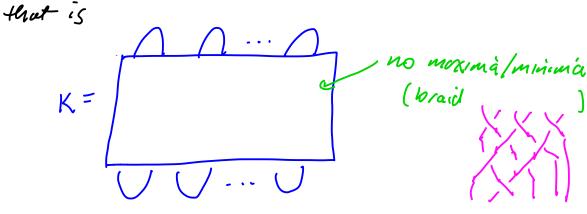


we can now slide handles

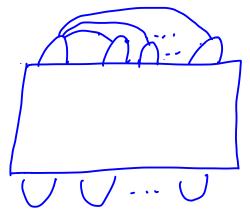




in general, any knot can be put in "bridge position"



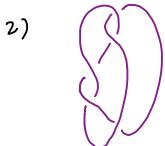
then a ubhd of



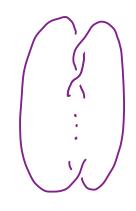
is a handlebody and one can use above proceeding to build doubly pointed diagram for K

exercise:

compute doubly pointed diagram for



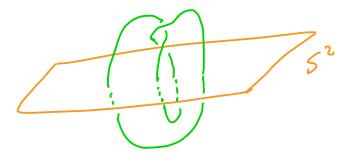
3) (2,2nel) forus knot



2n+1 frigts

Hint: all fit on a genus 1 Heegaard diagram

- 4) try a 3-bridge knot
- 5) any knot KCS3 of the form



12. n disjoint arcs « n m 52

" B; on 52

S.t. $K = U(a_1 \text{ with interior posted down})$ $U(b_1 - up)$

(another way to say Kis an n-bridge knot)

Show how to stabilize Heegaard diagram to get a 2-pointed diagram for K.

2) 2nd way to describe a knot is by a Heegaard diagram for $Y_{K} = Y - ubhd(K)$

note: $\Im Y_{K} = T^{2}$ so we can take a Morse function $f: Y_{K} \to [0,1]$

S.t $f^{-1}(1) = T^2$

from this we get a Handlebody and we can assume there are no 3-handles and just one 0-handle

thus Yk is described by a Heegaard diagram (Ig. [K, ... &], {p, ..., bg., })

moreover there is a curve By on Dix (and therefore on Zy disjoint from Bi--129-1) that corresponds to the menidian of K

if you attach a 2-handle to Bg too you get Y

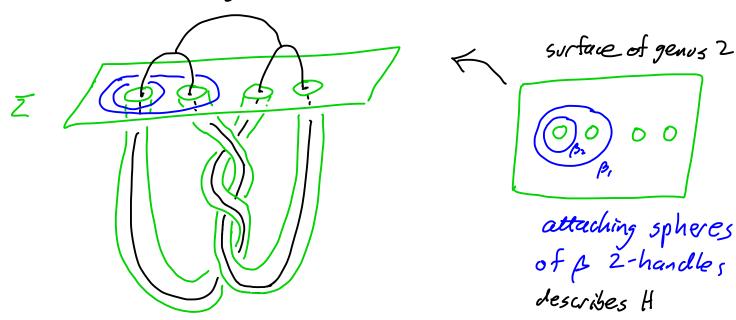
also note there it a curve it on d' k and intersecting by one times

that corresponds to a framing curve for K

example: we can use the proceedure above to find such a Heegaard diagram

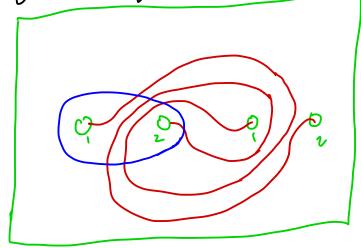
recall for
K =

we had the Heegaard surface I

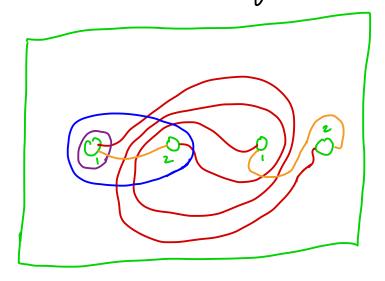


note: Bz is a meridian for K

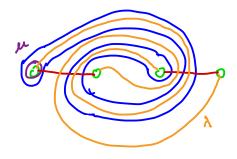
so a Heegaard diagram for 5% is



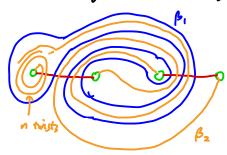
and the meridian and a longitude are



exercise: 1) 5 how that for the right handed trefoil you get



2) show k-traned surgery on the right handed trefoil is



for some n, determine n in terms of k

- 3) use Heegaard diagram above to see
 - 6 surgery on right handed trefoil is ((3,1) # L(2,1)
 - 5 ______ L(5,1)

 - o _____ a T2-bundle over 5'

enerase:

1) draw a diagram for the complement of the figure 8 knot

2) Show =3 surgery on the figure 8 knot contains an incompressible torus

9

is a T bundle over 5'

Hint: I don't know how hard these are!

Here is another way to get a Heegaard diagram for Yk whom Y=53

start with a knot diagram:

create a graph 6 that is Ku arcs at crossings

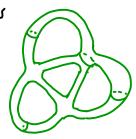
let H = nbhd of G clearly a handlebody

Claim: 53-H a handlebody

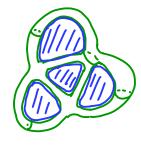
note

7

so His



and we have dish in complement

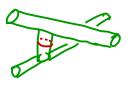


cutting complement of H along disks gives B'

: 53-H a handlebody and we know

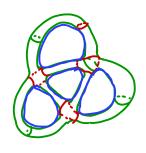
compressing dishs (ee. b curves)

whot are compressing dishs for H? at each crossing have

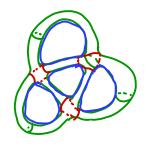


compressing along these gives 5'xDZ now compress along mendian to get B3

so we have for 53

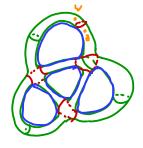


and for 53-ubhd(K)



just remove the meridian

a doubly pointed diagram for K is



exercisé: 1) find the longitude on 25%

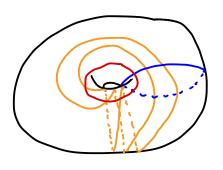
- 2) find Heegoard diagrams various surgeries on K and compair to diagrams created above
- 3) Simplify this diagram to the one created above.

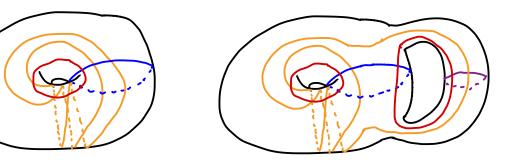
exercise:

1) given a doubly pointed diagram for K find a diagram for the complement of K

Hint: Stabilize

- 2) go the other way, 2e. given a diagram for 1/k draw a doubly pointed diagram for (K
- 3) If Ksits on a Heegaard diagram for Y show how to tind a diagram for TK eg. for the right handed trofoil we have





E. Fibered knotz (Mis section is based on work of Gabai)

We would like to understand the following:

given · 3-manifold Y

· a link LCY

· o connected surface ICY st. DI=L

is there a fibration

 $\pi:(Y-L) \rightarrow 5'$

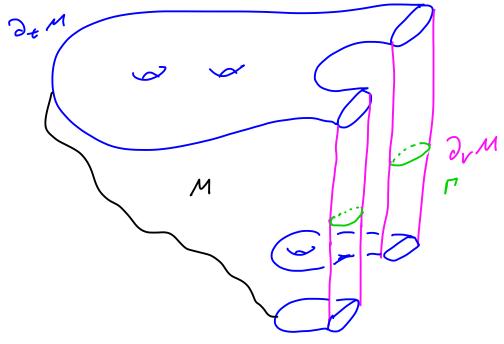
st. I is a fiber?

recall, a surtured 3-manifold is a cobordism M of surfaces with boundary such that DVM is a product D_M× [0,1]

note: $\partial_V M$ is a union of annuli call let $\Gamma = U$ core circles in the annuli the circles are called sutures

so $\partial_V M = nbbd$ of Γ

 Γ determines $\partial_V M$ and mostly $\partial_{\pm} M$ so we denote the situred manifold by $(M_i \Gamma)$



examples:

let I be a surface with boundary

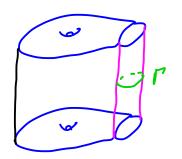
7-M

M = [x[0,1] is a sutured manifold

$$\partial_{+}M = \mathbb{Z} \times \{i\}$$

$$\partial_{-}M = \partial_{-}Z \times \{o,i]$$

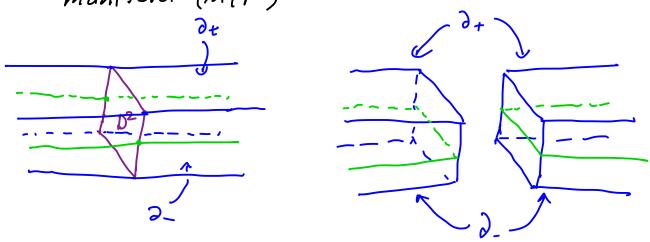
$$\int_{-}^{+} = \partial_{-}Z \times \{i'\}$$



this is called a product sutured manifold

we call a proporty embedded disk $D^2 \in (M, \Gamma)$ a product disk if ∂D^2 intersects Γ transversly and $\partial D^2 \cap \Gamma = 2$ points

note: given such a disk we get a new sutured manifold (M:1")



note: in $\partial M'$ there are 2 copies of D^2 , call them D_{\pm} and $D_{\pm} \cap \Gamma = arc$ write $(M,\Gamma) \stackrel{D^2}{\longrightarrow} (M',\Gamma')$

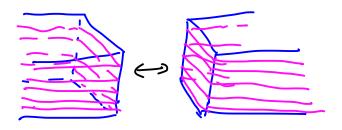
lemma 7:

if $(M,\Gamma) \xrightarrow{D^2} (M,\Gamma')$ and D^2 is a product disk then (M,δ) a product sutured manifold (M,δ') a product sutured manifold

Proof: (=) if M'= [x[0,1], note D_ c d, M= D [x[0,1]

and (after sotopy) can assume $D_{\pm} = T_{\pm} \times \text{loil}$ where T_{\pm} , T_{\pm} are disjoint intervals

get M from M by glving D_{\pm} to D_{\pm} and we can do this preserving the product str!



(=) if M= Ix [0,1], then a product disk can be isotoped so D= Cx [0,1] where C an arc in [

to see this note we can make D transverse

to $\Sigma \times \{t\}$ for all but finitely many t

and at these t hore a critical point of projection $\Sigma \times \{0,1] \rightarrow \{0,1]$ restricted to D

eg.

exercise: show the

bounds a ball
(re. I×(o.1) is irreducible)

use bull to isotop to remove 2 critical

points

when there are no critical paints easy to
isotop D to (x [0,1]) as claimed

Now, given D= Cx [0,1] we see

M'= (51C) x [0,1]

above we mentioned irreducible

a 3-manifold M is irreducible if any embedded

sphere 52 c M bounds a ball in M

exencise:

- 1) DCM properly embedded disk
 then
 Mirreducible

 MD irreducible
 - 2) Ix [0,1] is irreducible
 - 3) knot complements in 53 are irreducible

lemma 8:

if (M,Γ) is reducible, $\partial M=5$, and Γ connected then $M \in D^2 \times \{0,1\}$ and Γ isotopic to $\partial D^2 \times \{1/2\}$

Proof: irreducible => $M = B^3 = D^2 \times [0,i]$ and any 2 curses on $S^2 = \partial B^3$ are isotopic ##

(M,r) an irreducible sutured manifold

(M,r) is a product sutured manifold

(M,r) is a product sutured manifold

(M,r) is a product

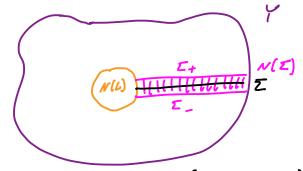
(M,r) is (M,r) is ... is (M,r)

where each D; is a product disk and

2 M, = Union of 5 g and r = one circle in

each 5

Proof: clear from lemmas 7 & 8 and exercise that Mirreducible = M\D' nreducible we say (M,r) is disk decomposable if I a sequence of product disks in (M, T) that cut (M, T) to (M, Tn) as in theorem so this says (M, P) disk decomposable iff (M, r) a product solered intol. now, given LCY and ECY a surface with DE=Y we can consider Y = Y-N(L) N(L)=ubhdL and ICY (actually INY = E) Y-L fibered & Y, fibered note: anbhd of ICY is N(Z)= [x(-E, E) let 15 = 1, - N(I)



DN(I)=-I_UI+U(DEx(-E,C))

SO DYE = I-V-I+ V (ON(L)-(OI×(-EE)))

amulus for each component of L

so (is a sutured manifold

with sutures Γ a circle in each and us of $\partial N(C) - (\partial \Sigma \times (-\xi, \xi))$

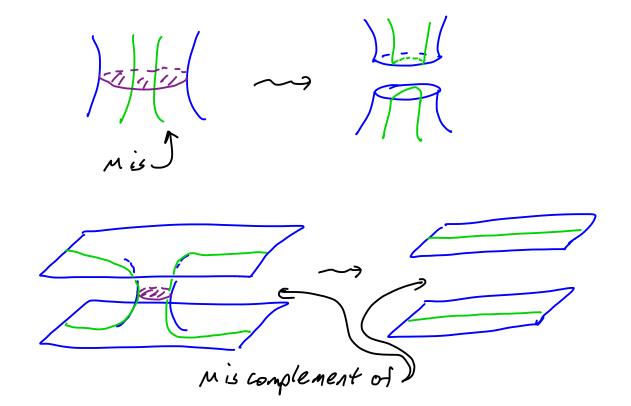
The 10:

Lis fibered in Y with I being a fiber (2) 1/2 is disk decomposable

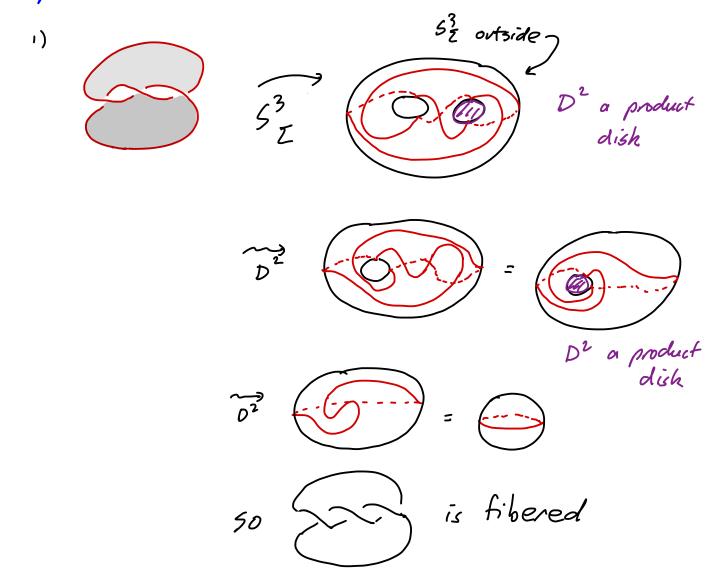
<u>Proof</u>: almost mediate from above exercise

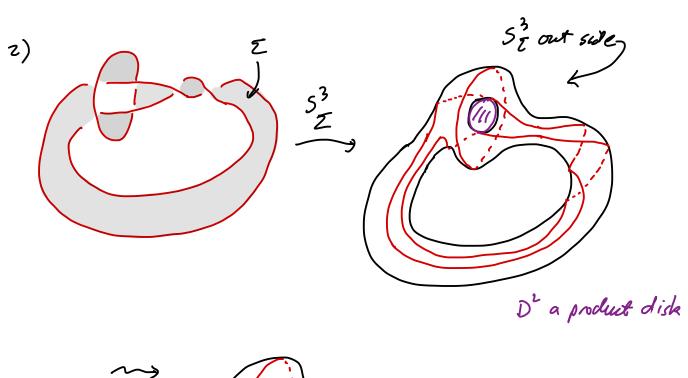
we say LCY is disk decomposable if YE is now we want to determine it a link in 53 is fibered so we need to see if the complement of a surface in 53 is disk decomposable

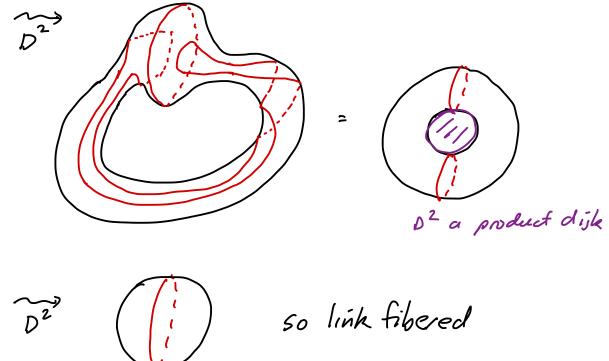
to do this we observe what happens when cutting on a product disk



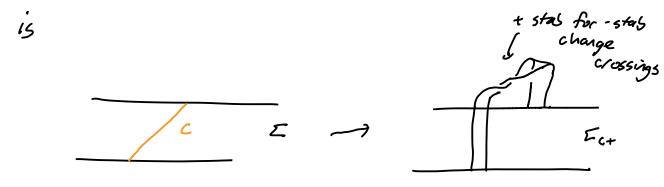
examples:





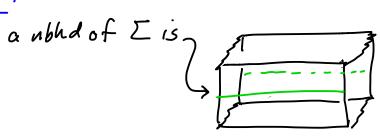


if $K = \partial \Sigma$ in Y and $C \subset \Sigma$ a properly embedded are the a \pm stabilization of Σ along C



if DI fibered then DIct fibered

Proof:

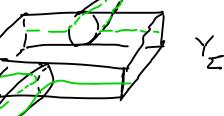


and its complement is disk decomposable

a ubhd of Ect is

-product dish D2

Y Is complement of ->



now use dishs form Yz

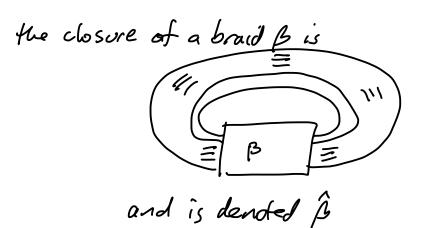
a braid is a bunch of strands moving from left to right

we let of be

1+1 == and of 1 be = 1+1

concatenate

any braid is a product of of 5

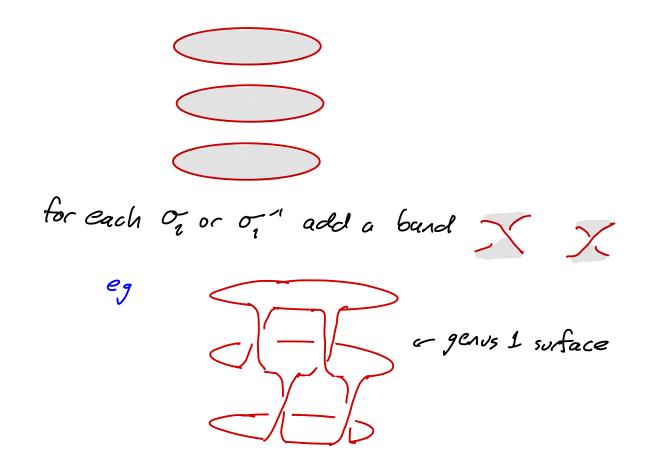


a braid is homogeneous if each of occurs as of of of of but you do not have of and of

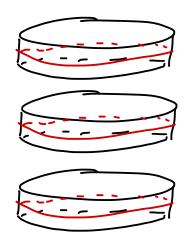
lemma 12:

closures of homogeneous braids are fibered

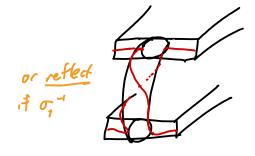
Proof: we first construct a nice Seifert surface for $\hat{\beta}$ for each strand in braid we take a disk



now a nord of each disk is

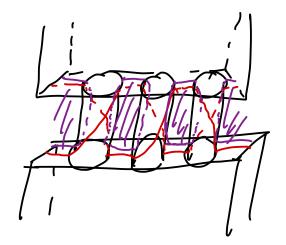


and each band adds



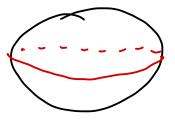
now consider the region between i and 141 sheet

so a ubhd is



ve get product disk

when we cut along disks the region between the 1 and 141 disk becomes



so if we cut along all such disks we got a union of product B^3 's :. $\widehat{\beta}$ is fibered!